Profinite group

In mathematics, profinite groups are topological groups that are in a certain sense assembled from finite groups; they share many properties with their finite quotients.

Contents

Definition

Formally, a profinite group is a Hausdorff, compact, and totally disconnected topological group: that is, a topological group that is also a Stone space. Equivalently, one can define a profinite group to be a topological group that is isomorphic to the inverse limit of an inverse system of discrete finite groups. In categorical terms, this is a special case of a (co)filtered limit construction.

Examples

Properties and facts

Profinite completion

Given an arbitrary group G, there is a related profinite group G^, the profinite completion of G. It is defined as the inverse limit of the groups G/N, where N runs through the normal subgroups in G of finite index (these normal subgroups are partially ordered by inclusion, which translates into an inverse system of natural homomorphisms between the quotients). There is a natural homomorphism η : GG^, and the image of G under this homomorphism is dense in G^. The homomorphism η is injective if and only if the group G is residually finite (i.e., \cap N = 1, where the intersection runs through all normal subgroups of finite index). The homomorphism η is characterized by the following universal property: given any profinite group H and any group homomorphism f : GH, there exists a unique continuous group homomorphism g : G^H with f = gη.

Ind-finite groups

There is a notion of ind-finite group, which is the concept dual to profinite groups; i.e. a group G is ind-finite if it is the direct limit of an inductive system of finite groups. The usual terminology is different: a group G is called locally finite if every finitely-generated subgroup is finite. This is equivalent, in fact, to being 'ind-finite'.

By applying Pontryagin duality, one can see that abelian profinite groups are in duality with locally finite discrete abelian groups. The latter are just the abelian torsion groups.

See also

References